

Advanced Sensors for Real-time control of Advanced Natural Gas Reciprocating Engine Combustion

S. H. Sheen, H. T. Chien and A. C. Raptis Argonne National laboratory April 23-24,2002

Project Objectives

To develop advanced sensors and control system for real-time combustion monitoring of advanced natural-gas reciprocating engines, proposed sensors include:

- NOx emission sensor
- Natural-gas composition sensor

Technical Approaches

- NOx sensor based on ion-mobility spectrometry (IMS)
- Natural-gas composition sensor based on acoustic techniques, measurements of speed-of-sound and acoustic relaxation spectroscopy

Project Team

- Argonne National Laboratory
 - Sensor development
- Northwestern University
 - Theoretical modeling
- Commercial Electronics (Broken Arrow, OK)
 - Control electronics

Major Tasks and Schedule

- Establish an acoustic model for fuelcomposition prediction ------09/30/01
- Develop and test non-radioactive IMS sensor for detecting NOx -----06/30/02
- Develop and test acoustic natural-gas composition sensor ------09/30/02
- Complete field tests of sensors ---09/30/03

IMS Sensor for NOx

Basic Design of an IMS

Electron Affinity- Negative Ion Formation

Mdecule	Electron Affinity, eV
CO	1.37
CO_2	< 0
Propane	< 0
Propene	< 0
Toluene	< 0
H_2	< 0
H_2O	1.2
NO	0.026
NO ₂	2.273
N_2	< 0
O_2	0.451
SO ₂	1.107

Test Gases

- Carrier gas
 - (Gas C-1): 23.6 ppm SO₂, 121.2 ppm H₂, 398
 ppm CO, 8.1% O₂, 10% CO₂, and N₂ the balance
 - (Gas C-2): Dry N_2
- Sample gas
 - (Gas S-1): 483 ppm NO₂ in dry nitrogen
 - (Gas S-2): 509 ppm NO, 515 ppm NO_x, and N₂

Peak Amplitude as a Measure of NO₂ concentration (Gases: C-2 and S-1, Sensitivity: 2 nA/V)

Negative NO Peaks of Different Concentration (Gases: C-2 and S-2, Sensitivity: 2nA/V)

Peak Amplitude as a Measure of NO concentration (Gases: C-2 and S-2, Sensitivity: 1nA/V)

Water Vapor Effect on NO₂ Peaks

Use of Thermoelectric Cold Plate to Reduce Water-vapor Content (Gas temperature in IMS: 0°C, Gas:C-2, S-1 and 1% water vapor)

Amplitude, mV

NO2 Concentration, ppm

Acoustic Natural-gas Composition Sensor

Basic Design of SOS Gas Sensor

Natural Gas Composition Sensor

System Setup

Mass Flow Controller

Pressure Sensor

Gas Mixing Chamber Dual-Channel Pre-amp

Transducer

Pressure Sensor Monitor

ARGONNE

Engine Fuel Gas Composition (Illinois)

• Methane 92.6 %

• Ethane 3.4

• Propane 0.6

• C4+

• Inerts

• Butanes 0.2

• Pentanes 0.1

• Hexanes 0.1

 \bullet O₂

 CO_2 0.7

• N_2 2.2

Speed-of-Sound in a Gas Mixture (Methane/Nitrogen)

$$C = \left[\frac{RT}{\sum_{i=1}^{n} x_{i} C_{p_{i}}} \frac{\sum_{i=1}^{n} x_{i} C_{p_{i}}}{\sum_{i=1}^{n} x_{i} M_{i} \sum_{i=1}^{n} x_{i} (C_{p_{i}} - R)} \right]^{1/2}$$

R: gas constant, T: absolute temperature

 x_i : mole fraction of gas i

M_i: molecular weight of gas I

C_{pi}: heat capacity of constant pressure for gas i

ARGONNE

Acoustic Attenuation in Gases

- Effects of viscosity and thermal conduction (classical attenuation) -- Proportional to f^2
- Diffusion effect -- Small effect in gas mixtures
- Acoustic relaxation effect -- Due to mainly vibrational relaxation of polyatomic molecules

Classical and Diffusion Attenuation

Relaxation Spectrum for 80% Methane in Nitrogen

Ethane/Methane Mixtures

 $f/p = 4.9 \times 10^4 \text{ Hz/atm}, T = 77.6 ^{\circ}\text{F}$

Ethane/Methane Mixtures

 $f/p = 4.9 \times 10^4 \text{ Hz/atm}, T = 77.6 ^{\circ}\text{F}$

Milestones Completed and Planned

- Milestones completed
 - Development of a quantum mechanic model for predicting acoustic relaxation of methane.
 - Evaluation of non-radioactive IMS sensor for detection of NO_x.
 - Developed a spark discharge negative ion source
 - Demonstrated the sensor capability to detect NO_x
 - Evaluated water-vapor effects and methods to reduce them
- Future plan
 - Develop and test acoustic natural-gas composition sensor
 - Develop field prototypes of IMS and acoustic sensors
 - Establish industrial partners for field testing of the sensors

Key Technical Barriers and Strategies to Overcome Them

- IMS key technical barriers
 - Moisture effect
 - Cross sensitivity
- Strategies
 - Engineering approach: Effective cooling, flow direction, etc.
 - Mobility resolution improvement: Drift tube design, ion-molecule chemistry, etc.
- Acoustic sensor key technical barriers:
 - Temperature and pressure effects
 - Wide-band transducer design
- Strategies
 - Establish a temperature and pressure calibration data base
 - Array transducer design

Typical ARES Engine Exhaust Composition

•	Nitric Oxide	200 ppm
---	--------------	---------

•	H_2O	10 %
•	H_2O	10°

Project Risks

• The complexity (e.g., high voltage and high-sensitivity charge amplifier) and cost of the field IMS may be a risk.

Acoustic sensor has no risk.

Impact on ARES

- ARES goals :To develop cleaner and more efficient next generation natural gas engines that will
 - Increase fuel combustion efficiency
 - Reduce emissions of NO_x, hydrocarbons, air toxics, and greenhouse gases
 - Reduce system costs and maintenance frequency
- Project impact on the goals:Reliable in-line sensors can provide continuous real-time monitoring of the combustion process and consequently improve the combustion efficiency.

Summary and Future Work

Summary

- IMS peak amplitude provides a measure of NO_x concentration (up to 500 ppm),
- Both speed-of-sound and attenuation can be used to characterize fuel-gas composition (methane/ethane mixtures have been demonstrated).

• Future Work

- Characterize fuel-gas acoustic relaxation spectra,
- Develop a prototype acoustic fuel-vapor sensor,
- Develop a prototype IMS sensor,
- Conduct of Field tests.

